

Challenging today. Reinventing tomorrow.

Status & Updates on Nondestructive Technologies

Scott Grieco, PhD, PE Global Principal & Technology Director

NYS COE – Healthy Waters October 6, 2023

PFAS Impacts All Water Sectors

Drinking Water & Reuse

- » Primary By MCL Regulation Targeted before 2024 → Implemented for DW by 2027
- » Impacts to Advanced Water Treatment (*Technology*) and IPR / DPR (*Uses*) → Needs to meet MCLs

Wastewater

- » PFAS being added to NPDES permits (Monitor Only)
- » EPA directive memo issued Dec 2022 Source identification and Pollutant Minimization Plans
- » Anticipating PFAS regulations under CWA

Treatment Residuals & Biosolids

- » Focus on assessment and reduction strategies
- » Some local guidance issued (MI, ME), but no Federal values
- » EPA is completing biosolids risk assessment targeted for 2024
- » Concern with RO reject discharges

What can remove PFAS?

- Chemical coagulation/precipitation
 - Gravity Separation
 - Dissolved Air Floatation
- Biological aeration
- Filtration
 - Sand/Multimedia filtration
 - Micro/Ultra filtration
 - Reverse Osmosis (RO)/Nanofiltration (NF)
- Disinfection
 - Ultraviolet
 - Chemical (chlorine, chloramine)
- Adsorption
 - GAC
 - Ion Exchange

PFAS Technologies – Non-destructive

Category	Transfer
Effective and Practiced	- GAC - Ion Exchange (single Use) - Reverse Osmosis (RO)
Maturing and Demonstrated	 Foam Fractionation Fluoro-sorb (single use adsorbent)
Developing	 Regenerable Adsorbents New adsorbents

- Scale-ability
- Range of Concentration
- Application (W vs WW)

Potential Availability

Short-term

Example Budgetary Drinking Water Costs (For Illustration Purposes)

Technology	Capital
GAC IX Fluoro-sorb	\$3 – 5 / gal
MF/RO	\$5 – 7 / gal

MGD	Adsorption	RO
1	\$3M – \$5M	\$5M – \$7M
10	\$30M – \$50M	\$50M – \$70M
25	\$75M –\$125M	\$125M – \$175M

<u>Note:</u>

Does not include site specific factors, inflation, media pricing sensitivity, other operating costs, etc. Assumed GAC = \$2.50/lb; IX = \$400 ft3; FS = \$5.50/lb

Managing Residuals with Transfer Technologies

<u>"Transfer" technologies</u>

- Liquid \rightarrow solid (GAC, Ion Exchange)
- Liquid \rightarrow liquid (RO reject)

GAC	IX	RO
Multiple use	Single use	Continuous
Reactivate (Off-site)	Disposed (Off-site)	Discharged (May require treatment)

Surface Active Foam Fractionation - SAFF®

- Strips PFAS using air only
- Concentrates PFAS using vacuum
- Removes criteria PFAS down to trace levels
- Field-demonstrated for groundwater/leachate

7

SAFF[®] Performance

- The more conductive the water, the more effectively SAFF will strip surface active PFAS compounds from solution
- Performance is a function of chain length
- Can be enhanced with additive to reduce surface tension (may not be needed for concentrate)

CETCO Fluoro-Sorb® 200

- Granular Material
 - Modified clay-based material
 - 20 x 40 mesh
- Rapid kinetics
 - Design 2 minutes EBCT
- Surface Loading Rate
 - 2 to 14 gpm/ft²
- More selective towards PFAS
 - Minimizes TOC interferences
- Manufactured in USA (ANSI/NSF 61)
- Single use

- New Jersey American Water
 - Beckett Station (Swedesboro, NJ)
- Daily demand 0.8 to 1 MGD
 - Design flowrate 800 gpm
- Shut down in 2018 due to PFAS detections above State MCL

Fluoro-sorb: Pilot testing

Fluoro-sorb: Installed Project

DATA GAPS & RESEARCH NEEDS

Related to Technology

- 1. Development of predictive tools for adsorption
- 2. More options
- 3. Application at Scale

Not related to Technology

- 1. Improved analytical capabilities at environmental/regulation relevant concentrations
 - Total organic fluorine
 - Screening methods
- 2. Fate & Transport in Agriculture
 - Water soil food pathways
- 3. Suitable replacement chemicals

Discussion

Scott.Grieco@jacobs.com

O in y f □